
JOURNAL OF COMPUTATIONAL PHYSICS !?o, 313~335 (1990)

A Special Purpose Computer for Molecular
Dynamics Calculations

A. F. BAKKER,* G. H. GILMER, M. H. GRABOW, AND K. THOMPSON

AT&T Bell Laboratories, Murray Hill, New Jersey 07974

Received February 27, 1989; revised September 6, 1989

We have constructed a computer facility for interactive study of atomic systems, with fast
turnaround between simulation runs. The computer includes a large external memory which
is shared by up to 16 parallel processor boards. Each processor board contains four fast
floating point chip sets, also operating in parallel. A host computer running the UNIXR
operating system is used to assemble and download instructions to the processor boards and
to transfer atomic coordinates to the memory. A machine with eight processor boards has a
theoretical speed of 182 Mflops, and runs molecular dynmics code 30100% faster than the
in-house supercomputer. The architecture was chosen specifically for applications involving
molecular dynamics code, using a new implementation of the algorithm, but it has also been
programmed for finite difference calculations. In general, it should be effective for simulations
of physical systems that can be subdivided into cells, such that the material of a cell is
influenced only by local interactions. % 1990 Academic Press, Inc.

1. INTRODUCTION

There has been much progress in recent years in the development of atomic scale
models of materials. These models have proved to be powerful tools for the deter-
mination of the structure of interfaces, thin films, liquids, and glasses. They are also
useful for simulations of the processing of materials, since they provide detailed
information on atomic movements and mechanisms. Melting and solidification of
silicon [l&4] and molecular beam epitaxy [S, 61 are some of the processes that
have been studied recently.

The molecular dynamics (MD) method involves the determination of atomic
trajectories for a group of interacting atoms. Given the initial positions and
velocities of the atoms, and a set of interatomic potentials that describes the
interaction between atoms, the force on each atom is calculated. The force is used
to calculate the new velocity and position of each atom at a time dt later, using
classical equations of motion and an approximation scheme to extrapolate to time
d t. This process is repeated until the desired time period for the simulation has been
spanned. The time step At used in the integration scheme must be short compared
with, e.g., the vibrational period of an atom in a crystal.

* Permanent address: Applied Physics Department, Delft Technical University, 2600 G.A. Delft,
The Netherlands.

313
OOZl-9991190 $3.00

CopyrIght $> 19W by Academic Press, Inc.
All rights of reproductron ,n any form reserved.

314 BAKKER ET AL.

The interatomic force is of short range in many systems including semiconduc-
tors, and existing potentials extend to about 10 to 100 neighbors. Although pair
interactions, in particular the Lennard-Jones potential, have been used extensively
for MD simulations of close-packed materials, they are unable to stabilize the
relatively open structure of the diamond-cubic lattice. The interaction between the
atoms in silicon has recently been modeled using a combination of pair (2-body)
and triplet (3-body) interactions [7, 81, or a more general multi-body term [9].

General purpose supercomputers are not designed for efficient MD calculations,
but for solving a wide range of problems. Furthermore, such computers typically
achieve large peak speeds by using vector floating point hardware or by parallel
processing architecture. In either case it has not been possible to achieve efficient
use of the floating point processors, because of the difficulty of writing compilers
that can optimize general code for complex architectures. In most cases only a small
fraction of the theoretical speed is utilized. As the trend moves towards parallel
architectures with many processors, optimization may become increasingly difficult,
although there has been some recent progress [lo].

For applications that have straightforward algorithms and that require large
amounts of computer power, one alternative is to design the hardware to suit the
algorithm [11, 121. If an algorithm is efficient for a particular architecture, it is
possible to achieve high speeds at relatively low cost. Fast scalar floating point
chips are now available at low cost; a $400 Weitek chip can perform up to three
million floating point operations per second (3 Mflops). We have designed a
processor ATOMS with a parallel architecture that can keep the floating point
processors busy much of the time when running our MD code. In this sense, it is
an algorithm-oriented processor. It is, however, fully programmable and is also
efficient for other calculations. Because of the simplicity of the shared memory
architecture, it was possible to construct and program the processor in an acceptable
time period using available microprocessors, floating point chips, memory elements,
and other components.

In the next section, we describe the amount of computer power needed for MD
simulations, which provided the motivation for this project. Section 3 is a brief
summary of the MD technique using 2- and 3-body forces. Section 4 contains an
overview of architecture of ATOMS, and a more detailed description is given in
Section 5. In Section 6 we discuss the specific computing requirements for our
implementation of the MD technique, with some of the timing considerations that
went into the design of our current version for ATOMS. Also included is a brief
discussion of the efficiency of ATOMS for finite element calculations of fluid flow
problems. Section 7 is a summary of our experience to date working with ATOMS.

2. COMPUTER REQUIREMENTS

Molecular dynamics methods have been applied to models for the study of the
structure of liquids and radiation damage for over 30 years [131. Initially they were

SPECIAL PURPOSE COMPUTER 315

limited to problems with short time scales and were practiced only at locations with
large computer facilities. Later, increases in computer power made it possible to
perform useful calculations on dedicated minicomputers, and many more
investigators became involved. A wide variety of systems has now been studied,
including diatomic molecular liquids, water, hydrocarbons [141, large molecules,
e.g. proteins [151, and solid interfaces and surfaces.

In all of these applications, the shortest relevant time scale for atomic motion is
v-l, where v is a vibrational frequency for an atom in a potential energy well. The
time step At used in the integration scheme must be small, such that v At < 1, and
typically At E O.O5v-‘. The simulation of several thousand atoms for a time longer
than a few vibrational periods clearly requires a large number of floating point
operations.

The actual time required for a simulation depends on the type of simulation
being performed, the properties of the system, and the rates of any dynamical
processes involved. Molecular statics simulations are usually the least computer
intensive, since they involve the relaxation of an initial configuration of atoms to a
local minimum in the potential energy. These calculations provide information on
the zero Kelvin structures, and have been used to test out interatomic potentials on
surface reconstructions and gain boundaries, to calculate the energy of defects (e.g.,
dislocations) and to look at the structure of a protein molecule. Since a unique
point in configuration space is calculated, the energy and other properties can be
obtained to high accuracy without the statistical uncertainty inherent in finite
temperature simulations.

The ability to generate a number of configurations quickly is crucial to molecular
statics investigations, since often the ground state must be selected from a number
of relaxed states. As an example, the equilibrium density of misfit dislocations in a
thin epitaxial film can be calculated by preparing a number of initial states with
different dislocation arrays [16]. The initial configurations are allowed to relax
with dissipative forces and the chemical potentials of the resulting states are
calculated from the potential energies. A configuration with 500 atoms interacting
with Stillinger-Weber forces must be simulated for about lo4 time steps to
approach the minimum potential energy. For a crystal at finite temperature, the
four nearest neighbors and approximately four of the 12 next-nearest neighbors
interact with the central atom, and the calculation takes about 1.5 days on a
computer in the one Mflop range, such as the VAX 780; 4.5 h on an Alliant FX4;
24 min on a Cray XMP (one processor), and 18 min on ATOMS configured with
eight processor boards. Therefore, the VAX 780 or Alliant must be operated in
batch mode, while it is clearly feasible to do rapid exploratory work on small
systems with ATOMS, and also with the Cray, if it is not being shared too heavily.
We note that the times given for the general purpose computers were measured
using existing Fortran code written by us and which we have used at some stage
for production MD calculations. Different algorithms were used in some cases in
order to more effectively utilize the computer capabilities, but we do not claim that
this code is beyond improvement, of course. Furthermore, all calculations on the

316 BAKKER ET AL.

Cray and VAX were made in double precision, whereas most of the force
calculations on ATOMS were made in single precision. Single precision is adequate
for most MD simulations.

Equilibrium MD simulations are used to study phase transitions, diffusion of
atoms in liquids and on surfaces, and general equilibrium properties of materials at
finite temperaturesThese calculations can require sizable computer resources. First,
it is essential to equilibrate the system for a time greater than a correlation period;
i.e., the time required for the system to assume a structure that is only weakly
correlated to that of the initial state. This time depends on the system and the
parameter that is being measured, but for viscous liquids or those with boundaries
between coexisting phases, it can be quite long. In some cases it is necessary to test
several different initial configurations to ensure that the system is not trapped in a
region of phase space with a local minimum in the free energy. Second,
the measurement of time-averaged properties usually includes a large statistical
uncertainty. Often one is tempted to assign physical reality to changes in the
properties which are, in fact, large statistical fluctuations. The time required to
obtain reliable averages is considerably longer than the correlation period.

Finally, non-equilibrium MD is used for studying transport coefficients, the
dynamics of a system subjected to a sudden change in conditions, or the structures
and mechanisms that occur during the processing of materials. In practice, most
MD simulations are limited to extremely short observation times, when measured
in terms of the simulated physical system. Models with 1000 or more particles are
usually simulated for less than a nanosecond (1 ns z 500,000 time steps). Many
physical processes are simply too slow to permit direct MD simulations. For
example, the relaxation of glasses, crystallization of liquids, dislocation climb, and
diffusive aggregation of defects often do not advance appreciably in a nanosecond.
One interesting process that does occur on this time-scale is the solidification of
silicon, which has been measured experimentally to have crystal-melt interface
speeds up to 15m/s. At this speed the interface moves 158, in a nanosecond, and this
is the minimum time required to obtain useful information. However, most
processes involving crystal surfaces are limited by the rate of surface mass transport.
The surface diffusion coefficient D, has a maximum value near the melting point
approximately equal to the diffusion coefficient in the melt; i.e., D,, < 10e4cm2/s.
A simulation time of 0.1 ns would be required for one atom to diffuse an average
distance of 5A. Simulation of molecular beam epitaxy with, for example, a 7 x 7
reconstruction on a (111) face of silicon would require even longer runs, and it
would perhaps be necessary to run a system with 2000 atoms for lo6 time steps.
This would provide information on the transformation of the 7 x 7 symmetry to
that of the bulk as the surface layer is covered up by the new material arriving from
the vapor. This one run would require nearly two years on a VAX 780, but only six
days on an &board version of ATOMS. Thus, dedicated special-purpose computers
operating in batch mode make it feasible to study new problems.

There are two additional considerations that go into simulating all of the applica-
tions discussed above. First, an iterative procedure is often required. For example,

SPECIAL PURPOSECOMPUTER 317

to determine a transition temperature for a phase change, a simulation is initiated
at the estimated temperature, and, after the run is completed the data are evaluated
and used to make a new estimate for the next run. This process is repeated until
the temperature is determined to the desired accuracy. Second, most MD systems
are quite small, and the size dependence of the results should be measured. Again,
this requires additional simulations of different systems under identical conditions.
Clearly the turnaround time between runs is the limiting factor in assessing the
behavior of the system.

A major goal of this project was to construct a computer with sufficient computa-
tional power that short molecular dynamics jobs and molecular statics computa-
tions could be carried out interactively, with the uninterrupted attention of the
investigator. This requires enough power to simulate atomic motion for several
nanosecnds per day. Currently an eight processor system running for one day can
simulate a nanosecond for a configuration of 500 atoms with eight interacting
neighbors, assuming a relatively simple potential such as that of Stillinger and
Weber.

3. ALGORITHM

We will now discuss an efficient algorithm for molecular dynamics simulations
when the interatomic potentials involve both 2- and 3-body interactions. The input
data consist of initial positions and velocities of the atoms and a set of interatomic
potentials. The MD algorithm then involves updating positions, calculating new
forces, updating momenta; and, typically, the gathering of statistics (e.g.,
thermodynamic averages and correlation functions).

The two issues that must be addressed for each part of the algorithm are (i) the
number of calculations and (ii) the amount of memory that is required. The number
of calculations required to update positions and momenta scales with N, the
number of atoms in the system. In principle, the force calculation scales as N* when
only 2-body interactions are included, and as N3 when 3-body interactions are
present. However, this number is much smaller in the case of potentials that are of
short range, and can be truncated after a distance rc of several atomic radii.

Several techniques are used to reduce the required number of calculations for
potentials of short range. The linked list method [17] speeds the force calculation
on atom i, since it provides lists of atoms occupying cells that are subdivisions of
the computational box. This results in a force calculation scheme of order N,
independent of the type of interactions that are included. When memory space
allows, an approximate pair list may also be calculated. This provides a more
precise list of neighboring atoms than that obtained with the linked list. Our MD
code includes both techniques. Associated with each atom is a list of neighbors that
were within a distance r, at the time it was compiled. The magnitude of rm is
chosen to be somewhat larger than the force cutoff, rr. To facilitate this calculation,
linked-list cells are used. The edge length of a cell is chosen to be greater than or

581/90/2-4

318 BAKKER ET AL.

equal to r,,,. Neighbors in the same cell and in the surrounding 26 cells are tested
for inclusion in the approximate pair list. The approximate pair list is used for ten
time steps, and r,,, is chosen to be larger than r,. by a sufficiently large margin that
atoms beyond the larger sphere will not drift into the smaller one during this
period. The memory space required for such a list scales with Nn, where n is the
average number of neighboring atoms in the pair list.

We now consider the force scheme when 3-body interactions are included. The
energy of the system can be expressed as:

E= c Vc2’(r,) + C +3)(ri, r,, rk),
v;i<, ijkik;icjck

(1)

where VC2) is the 2-body interaction and rii is the distance between atoms i and j.
VC3) is the 3-body interaction which for the Stillinger-Weber and Biswas-Hamann
potentials can be written as:

V(3)(riy ‘j’ rk) = h(rqy rik, ejik) + h(rji, rjk, 0,) + h(rki, rkj, 8j&), (2)

where ejik is the included angle between atoms j, i, k. The first term of this sum,
h(ri,, rik, !!I@), involves atom i at the apex of a triangle, with legs ri/ and rik. This
term will contribute a force Fj= -ah/&, to atom j and a force Fk = --t3h/i?r, to
atom k, as well as a force F, = -ah/&, to atom i. Since the sum of the forces must
be 0, the force on atom i is usually evaluated as Fj = - (Fj + Fk). Each 3-body term
in the potential of (2) is a product of three terms,

NT,, rik, Ojik) =S(rij)f(rik) g(COS ejik), (3)

in the Stillinger-Weber and Biswas-Hamann potentials. This feature simplifies the
use of lookup tables for the potentials and makes possible the very efficient MD
algorithm discussed below.

The algorithm for calculating forces should be considered carefully. In the case
of triplet forces satisfying Eq. (3), an efficient method can reduce computation
time by more than an order of magnitude compared to a simpler approach! There
are two commonly used algorithms for this calculation. The method used most
frequently is to calculate the total pair force on all atoms, and then the total force
due to 3-body interactions. The triplet calculation does not make use of any
information generated for the pairs, and the triplet terms in Eq. (3) are calculated
from scatch for each triplet. This can be extremely time consuming, since each
triplet requires two calculations of the exponential inf(rii). The second option is to
consider each atom in turn and first calculate all pairs with the given atom and the
associated forces and then all triplet forces with the specified atom at the apex.
During the pair calculation, the f(rii) are also computed and saved. Only the pairs
with rii< rr are passed on to be used in the identification of the triplets. This
approach avoids the necessity for maintaining a complete triplet list with the

SPECIAL PURPOSE COMPUTER 319

associated memory allocation and does not repeat calculations of rij and other
parameters for the 3-body forces that have already been performed for the pair
forces. This approach also eliminates the need for recalculatingf(rii) for each new
triplet that contains the ij pair. Since the number of triplets containing a given pair
scales with n, this can have a very large effect on the efficiency. This scheme also
generalizes for the Tersoff potential [9], and for any scheme where the n-body
terms are simply combinations of pair terms. The MD code for ATOMS
implements the second approach.

4. GENERAL ARCHITECTURE

The algorithm described in Section 3 maps very well onto a parallel computer
architecture, and motivated the design and construction of ATOMS. There are two
key features of the algorithm. First, the time required for each part of the program
scales as N (updating positions, calculating forces, and bookkeeping). Second, the
most time consuming part (97%) of the algorithm is the force calculation and the
associated bookkeeping. Therefore, we have concentrated on the implementation of
the force calculation to determine an effective computer architecture.

There are many ways to perform independent force calculations in a multi-
processor system. They differ mainly in the method of distributing the data for
processing. In a shared memory machine a current and complete set of data is kept
in the shared memory, and data are sent to each board in turn, along with a data-
manipulation task. Inter-processor communication is not required since each
processor board accesses the data directly. In a distributed memory machine, where
a some of the data are kept in local memory on each processor, inter-processor
communication may limit the efficiency. It can be effective when applied to local
problems that can be programmed in such a way that a processor needs to
communicate only with a small group of neighboring units. However, the
programming of the communications can be quite difficult.

A shared memory architecture has the restriction that the number of processors
is limited by the bandwidth of the common data bus, since all processors must
access this memory. For a given number of processors, it is most efficient when the
algorithm involves a large number of calculations based on a relatively small data

FIG. 1. Basic components of the shared memory machine, ATOMS.

320 BAKKER ET AL.

SPECIAL PURPOSE COMPUTER 321

set. The number of the data required for a 3-body force calculation scales as the
number of neighbors n, and the number of calculations scales as n2. For sufficiently
large n, the shared memory architecture is a good solution. We find that the shared
memory architecture of ATOMS is efficient for the Stillinger-Weber potential, and
therefore it should be effective for most other potentials that have been developed
for semiconductor systems since they involve more complex n-body calculations.

ATOMS is a multiple instruction, multiple data (MIMD) parallel computer. The
basic components are shown in Fig. 1. All boards in ATOMS are interconnected
through a single VME-bus, which is interfaced to the Q-bus of the host, a
MicroVAX II. The system consists of an interface (I) board, one or more memory
(M) boards, one control (C) board, and many identical processor (P) boards. The
backplane can accommodate up to 16 boards.

The M board is the shared memory. The VME-bus is the only data channel
between all boards and is controlled either by the C board or by the host through
the I board. The host controls the VME-bus to download microcode for the C and
P boards and accesses the M board to transfer data. The C board controls the
VME-bus to transfer data between the M board and the C and P boards. As
indicated in Fig. 1, there are also connections for transferring data between adjacent
P boards, so in addition to operating as a shared memory machine, ATOMS can
operate as a linear processing array.

The P boards perform the floating point operations. There is a second level of
parallelism in the architecture of ATOMS, since each P board contains four identi-
cal floating point chip sets. However, these chip sets are controlled by one instruc-
tion flow, so this part of the architecture is single instruction, multiple data
(SIMD). Each chip set contains at least one arithmetic logic unit and one multi-
plier, and the instruction flow is designed to keep both chips working at the same
time.

A picture of the hardware with two P boards is shown in Fig. 2. The processor
is mounted in a standard 19 inch rack, and the P boards are 9U x 40cm
Euroboards.

In addition to our goal of constructing a fast, efficient processor suitable for the
MD algorithm, we had some additional requirements. First, the floating point chips
should have available both single and double precision arithmetic. This provides
the flexibility to simulate a variety of physical systems with different requirements
on the precision of the results. Second, the floating point section should be
relatively simple to program, since small changes to the code are often desired (e.g.,
different integration scheme, different form for the interatomic potentials, or a new
correlation function).

FIG. 2. Photograph of 2-board machine. Boards visible here are, from left, the C board, the I board
(edge visible with two cables connected to it), the M board, and the two P boards. The Weitek floating
point chips are in the bottom row on the P board, the dual port SM chips are in the row above, the
microprocessor XP is the square chip near the center, and the LM printed circuit boards are to the left
of center and bent at an angle to the P board.

322 BAKKERETAL.

5. DETAILED ARCHITECTURE

5.1. M Board

The shared memory M is a commercially available dynamic ram board for VME-
bus applications, and can be obtained in 4, 8, and 16 Mbyte sizes. Multiple M
boards can also be accommodated to extend the capacity further, with each
occupying one of the 21 slots on the backplane.

5.2. C Board

The C board is a custom multiwire board, with commercially available chips. It
has its own microprogrammable control, with a 100 ns cycle time. The C board
contains a 64k x 32 bit fast static memory XM and a 16-bit processor XP, the
Advanced Micro Devices AM29117. They are interconnected by a 16-bit address
channel, the A-bus, and a 32 bit data channel, the X-bus, as shown in the diagram
in Fig. 3.

XM is addressed by a 16-bit address counter/register xmac, which can be loaded
by the A-bus and incremented or decremented. A bidirectional latch xml interfaces
the 32-bit data with the X-bus. One cycle is required for a read or write operation,
including the transfer over the X-bus to its destination.

The external memory M on the VME-bus is addressed by the C board. This is
accomplished by a 24-bit address counter/register Imac, which can be loaded by the
A-bus in two portions, and incremented or decremented. The address is fed to the
VME address bus via address register Zmar. Three cycles are required for a read or
write operation including the transfer over the VME-bus.

vMt-l3us vMt-l3us

I I I
A-bus (16 b&s address) A-bus (16 b&s address)

1 1
m

1 1 1 1 1 1 1 1 xpor xmac lmac lmac sreg sreg ireg ireg padr padr

Q
I I 1’ 1’ ’

h-tar h-tar
XP XP XM XM
16b 16b ah x 32 ah x 32

StatUs i”rrr”ction

/ / / / /

xpir xpir Xflll Xflll 132 132 /16 112 /e

1 1 t-t I b
0 0

b b t t 1 t
X-bus (32 MS data) X-bus (32 MS data)

t
loM loM ml BP P addr

FIG. 3. Components of the control board (C).

SPECIAL PURPOSE COMPUTER 323

The XP microprocessor is used for address generation, loop counting, and other
operations involving integer arithmetic. The X-bus supplies XP with input data via
its 32-bit input register xpir. The most or least significant part of xpir can be
selected as input for the processor XP. The output of XP is the A-bus, which feeds
xmac and lmac and a 32-bit output register xpor. This register can be loaded in two
16-bit portions, and its destination is the X-bus.

Additional A-bus destination registers are present: sreg supplies I with status, ireg
supplies P with microprogram start addresses, and padr selects each P board based
on its unique board address. When a P board is selected it can accept an instruc-
tion or is able to use the VME-bus for data transfer under control of the C board.

A microprogrammable instruction flow runs the entire C board. A 4k x 64 bit
writable control store (WCS) contains the microprogram, which is downloaded
from the host. An Advanced Micro Devices AM2910 sequencer is used to generate
the microprogram addresses, the contents of which are stored in a microprogram
instruction register. An instruction stream is fed to the C board at 10 MHz; this
allows nested subroutines, conditional jumps, and other powerful commands.

5.3. P board

The P board consists of two sections, an X section that is very similar to the C
board, and a floating point section F. The X and F sections each have their own
microprogrammable control, as shown in Fig. 4. X has a 100 ns cycle time, but the
floating point part F has a 50 ns cycle time. X stores and controls the transfer of
data whereas F executes the floating point operations.

h ?I X-SIDE ; F-SIDE

NL NR

FIG. 4. Components of the professor board (P).

324 BAKKER ET AL.

We first consider the X part of the P board. As in the C board, the data path
of X contains a 64k x 32 bit fast static memory XM and a 16-bit processor XP, the
AM291 17. A major difference is the presence of a 1M x 32-bit dynamic memory
LM. This memory is composed of 16 printed circuit boards with nine 256K-bit
chips on each board. We have also tested the circuit with lM-bit chips, which
increase the capacity of LM to 4M x 32 bits. Access to LM is similar to that of the
M dynamic memory from the C board. XP, XM, and LM are interconnected by the
16-bit address channel A-bus and a 32-bit data channel, the X-bus.

As in the C board, XP is supplied with input data from the X-bus by way of xpir,
and the output is the A-bus. The XM memory is addressed by xmac and is inter-
faced to the X-bus by xml in exactly the same way as described for the C board.
Similarly, xpor is used to transfer output from XP to the X-bus.

LM is addressed by a 22-bit adress counter/register lmac, which can be loaded
by the A-bus in two portions and incremented or decremented. Latches lmil and
lmol interface the 32-bit data with the X-bus. Three cycles are required for a read
or write operation, including the transfer over the X-bus.

Other connections to the X-bus are the interface section for the VME-bus (not
shown), and a bidirectional latch sml to the F part. Also included is interface
hardware for direct data transfer with two neighboring P boards; NL and NR are
bidirectional latches with connectors for cables going to the “left” and “right” P
boards, respectively. This hardware provides the option for running closely coupled
processors in a linear array. This feature has been useful in finite difference applica-
tions, where extensive data transfer between boards is essential.

The microprogrammable instruction flow for the X side is identical to that of the
C board. A 4k x 64 bit writable control store (WCS) contains the microprogram,
which is downloaded from the host. The C board supplies X with instructions in the
form of microprogram start addresses, so that C determines which instruction flow
will be executed.

We now consider the F part of the P board, shown on the right-hand side of
Fig. 4. The F part consists of four identical floating point chip sets. The interface
of each of these chip sets to the X section is provided by dual port memories labeled
SM in Fig. 4. These memories are 32 x 32 bit register chips (Weitek 1066), two in
each chip set. Each chip set contains a 32-bit bus which is connected to the three
floating point chips. One of the floating point chips is an arithmetic logic unit
(ALU), which performs additions, subtractions, divisions, and certain other opera-
tions (Weitek WTL1165) and the second chip is a multiplier (WTL1164). The ALU
and multiplier operate at 20 MHz, and 7 cycles are required to perform a single
precision multiply or add, for 2.86 Mflop each. It is possible for the ALU and multi-
plier to perform operations concurrently, as long as the result from the ALU is not
needed for the next multiply operation. A socket for a third chip is included; it can
accommodate either an ALU or a multiplier, or remain empty. This feature was
included so that the hardware can be easily adjusted for code which has an
unbalanced number of ALU operations relative to multiply operations. Including a
second ALU was found to increase the speed of the MD code with the

SPECIAL PURPOSE COMPUTER 325

Stillinger-Weber potential by about lo%, but these extra chips increase the cost of
a P board by about 16%.

The two SM memories in each chip set are used in a “ping-pang” mode. The
thick lines in Fig. 5 indicate active data paths at one instant in time. The X side
(XM in this case) is transferring data to SM-A of chip set 2, while all four chip sets
are performing calculations on data in SM-B. Therefore, data transfer with X can
proceed in parallel with the floating point calculations.

Although the four chip sets of the F section are generally executing the same
instruction in SIMD, there is the capability of modifying the instruction that each
set is executing. Each of the four sets has four addressable two bit registers that can
be used for op-code modification, so that the actual op-code that one set executes
can be add, subtract, or copy depending on the code in its register. The address of
the register is the same in all four floating point chip sets. This is used for handling
periodic boundary conditions in the MD code. Each pair in the approximate pair
list has an associated eight-bit function code that determines whether the interac-
tion is direct or is the result of a periodic repetition of the system in the x, .Y, and/or
z direction. When the pair parameters are processed in a floating point chip set, the
two-bit registers are loaded from SM with the op-code associated with that pair.
The calculation of the difference in the x coordinates, for example, incorporates this
feature to add or subtract the length of the computational box in that direction, if
necessary.

Each floating point set has a live-bit status register associated with it to report
any floating point exceptions and the result of comparisons. The exception bit is set

XM L! SML

____-_ ______

SWA SM-B

9
+ x

Lc&-&-A L-chpwi-‘-: :.__ c~~-je7 3- _ _ :

FIG. 5. Data paths between XM and the F side of the P board. In ping-pong mode, transfer data
from the X side to one of the SM-A, while floating point chips are performing calculations on data in
all SM-B chips.

326 BAKKER ETAL.

when one or more exceptions occurs during operations that are specified in the
code. It can be read by the X side of the P board, and it is cleared by a separate
command. Three bits are addressable and can be used to report the result of
comparisons to the X side. The fifth bit is a flag internal to the F side, and can be
used to change a write to SM-A or SM-B into a “no-op.” This does not change the
timing of one floating point set relative to the others and permits certain steps in
the code to be modified if, for example, the distance rii exceeds the cutoff rC.

There is a separate microprogrammable instruction flow for the F section. A
4k x 32-bit WCS contains the microprogram, which can be downloaded from the
host. Here a binary counter is used to generate the microprogram addresses in
order to guarantee an instruction stream at 20 MHz. Microprogram start addresses
are received from X.

The ability to have the ALU and multiplier (and optional third chip) of each
chip set running concurrently is implemented by an optimizing assembler. The
assembler takes the user-written code, a sequence of additions, multiplications, and
divisions, and schedules the floating point chips for the seven cycles of each opera-
tion. The seven cycles are used for loading the chip with two operands from SM,
performing the operation, and unloading the result to SM. As shown in Fig. 5, there
is only one data path from SM to the two (or three) floating point chips, so only
one chip can be loaded from SM at any time. The assembler allows an arbitrary
mix of ALU and multiplier chips, so different combinations of chips can be tested
with the code.

5.4. Other Boards

The host interface I consists of two boards, one at the host side and one at the
ATOMS side, and they are interconnected by a flat cable. Its primary function is
to connect the ATOMS VME-bus to the host system Q-bus. A separate instruc-
tion/status bus directly connects the I board to the C board to provide a means for
the host to supervise ATOMS. In addition, a four-bit code from the host deter-
mines the connection of the host bus with the VME bus (on or off), and the mode
of ATOMS for download (reset or start).

Finally, we note that all memory units in the machine are accessed by two
different sections, as though they were dual ported. Particle data is put into the
shared memory M by the host computer. This data is transferred by a program
running in the C board to the different P boards and stored in XM. From XM the
particle coordinates are transferred to the four chip sets by means of the
dual-ported registers SM-A and SM-B. These registers are then used to supply the
floating point chips, where the calculations are processed.

6. CURRENT APPLICATIONS

6.1. Molecular Dynamics

We have programmed the MD algorithm described in Section 3 for atoms inter-
acting via the Stillinger-Weber type potential. We can currently handle configura-

SPECIAL PURPOSE COMPUTER 327

tions with up to 6400 atoms and with up to 16 different types of atoms (varying the
size and/or strength of interaction between different types of atoms). The host
MicroVAX compiles the MD code and downloads the code for the C board and
for the X and F sections of the P boards. Identical code is distributed to all P
boards. The force lookup tables are distributed to the LM memories, and an initial
configuration is loaded into the M board. Execution is begun when an instruction
start address is sent to the C board. After this point ATOMS is essentially
autonomous, although it can be instructed to periodically transfer intermediate
results to the host. This is accomplished by having the C board send a flag to the
host indicating that it is can take control of the VME-bus in order to access the M
board, where the results are stored. The host returns control to the C board when
it has finished reading the data.

The MD code distributes the force calculation among the P boards on an atom
by atom basis, as shown in Fig. 6. The P boards are polled sequentially by the C
board to collect results and distribute new data for processing. The C board trans-
fers the coordinates of a central atom and its n neighbors (listed in the approximate
pair list) from the shared memory, M, to one of the P boards. If the P board has
results from a previous central atom, the forces are accumulated in the M board for
all affected atoms. If the system is operating efficiently, the C board will select a P
board for data transfer before it has completed its calculation. That is, no time is
lost because the P board must wait for a new set of data. In order to achieve this
condition, the data transfer time with N, P boards must be shorter than the time
tcalc for one P board to transfer its data and perform its calculations; i.e.,

P Board 1

PBoard2

PEbard3

P Board 4

P Board 5

FIG. 6. Activity as a function of time for force calculation of 20 atoms for a Sboard machine; top
row is activity of board 1, next row board 2, etc., and bottom row is the activity of the M board.

328 BAKKER ET AL.

where ftrans is the data transfer time for one board. Furthermore, since the number
of neighbors is larger for some atoms than for others, some P boards may finish
before others that were selected earlier in the sequence, which can cause a delay for
these boards. This is most pronounced for inhomogeneous systems, although even
in this case the fraction of atoms with low n values is usually small, and the reduc-
tion in efficiency is not important, as will be demonstrated below. If this were a
problem, a more sophisticated polling scheme could be implemented by a software
change for the C board.

The force calculation is performed in two phases. First, force parameters for all
pairs with the central atom are calculated, including those that will be needed for
the 3-body calculation. The 3-body parameters are stored in XM for later use. The
functions that determine the 2- and 3-body forces reside in LM as lookup tables
which are evaluated by quadratic interpolation. An important consideration with
such a powerful floating point section is that of supplying data fast enough to keep
the chips busy with calculations. The dual ported memories SM-A and SM-B
provide a fast channel between the floating point chips and the XM memory, but
it should be noted that the microprocessor XP must supervise the transfer of this
data and can only load one SM memory at a time. Because of the necessity for
numerous data transfers with both XM and the slower LM, the calculation of the
pair parameters does not utilize the floating point chips efficiently. However, the
triplet calculation can then be easily arranged. All parameters in the 3-body forces
are associated with pairs, as discussed in Section 3, and the forces are obtained
from all unique combinations of pairs taken two at a time. (Since all pairs include
the central atom, two of these pairs constitute a triplet.) The large number of
computations necessary for the 3-body forces can be accomplished efficiently using
more than one chip set, since the SM memories can be loaded with the necessary
data directly from XM, as shown in Fig. 5.

The initial design of ATOMS was based on the characteristics of the 3-body force
calculation, since this involves the largest number of floating point operations. That
is, N, and the number of chip sets per board N, were chosen so as to optimize this
part. An increase I/, and N, would increase the theoretical speed, but this is
cost-effective only if the data transfer is fast enough to keep the floating point chips
supplied. In the following paragraphs we discuss the estimates that went into
choosing the values of N, and N, to implement in hardware, and we also discuss
how this has worked out in practice. For studying thin film systems, e.g., Ge films
on Si substrates, atoms in the strained film have 16 neighbors completely within the
cutoff, rc. The timing estimates given below are for a perfect crystal with n = 16.

Consider the 3-body force calculation for one triplet with the central atom i; i.e.,
the forces resulting from one of the terms h(r,, rtk, @,,) in Eq. (2). This calculation
is performed in one of the N, chip sets. The following data associated with pair ij
must be transferred from XM to SM: r!, ‘, dx,/r,, dy,lr,, dz,lro, f (rii), a force term
based on f(rij), and the three components of the force on atom j that were
accumulated in previous calculations. Thus, each pair has nine input parameters
associated with it, for a total of 18. The results of the calculation are the potential

SPECIAL PURPOSE COMPUTER 329

energy h of the triplet and the new totals of the force components on all three
atoms. Only the forces on atoms j and k are written to XM; since the central atom
is involved in all triplets, its force components and the potential energy h are
accumulated in SM. This is six output parameters, or a total of 24 data transfers
between SM and XM. The time for these transfers is estimated as one cycle each,
i.e., t = 24cycles/lO MHz = 2.4~s. Since the chip sets must be loaded sequentially,
the transfer of data for four chip sets takes a total of 9.6~~. In fact, the data transfer
is slower than the above estimate because of the overhead required for XP to
calculate the memory addresses. The activities of the SM memories during the
triplet calculations are illustrated in Fig. 7.

Once the data is in the SM memory, the calculations for the forces and potential
energy requires 25 additions and 25 multiplications for the Stillinger-Weber model.
The optimum calculation time is therefore t = 25/2.86Mflop = 8.74~s, assuming that
the two operations can run concurrently. Although both estimates are on the low
side, the data transfer and calculations should be approximately equal for N, = 4,
and increasing NC beyond this point would result in a data transfer bottleneck.
That is, there is almost enough time to unload results and load new data with the
SM-A memories of the four chip sets while the floating point chips are performing
the calculations on data in the SM-B memories. The total time for performing one
triplet calculation is the larger of the two times; in the case of our estimates, it is
the triplet transfer time of t, = 9.6~s.

W-A
Chpsell

W-6
Ch@ set 1

Ch@ set 3

FIG. 7. SM activity as a function of time for triplet calculations. Here the data transfer for four chip
sets can take place during the calculation time.

330 BAKKER ET AL.

The time required to generate the pair forces on the central atom is the sum of
the data transfer and calculation times, since in this case we did not distribute the
calculation over the chip sets and only SM-A was used. Twelve parameters are
needed from LM (force and potential energy values for both 2- and 3-body inter-
actions, three numbers are required for a quadratic interpolation of each); each LM
to SM transfer takes four cycles. The XM memory is accessed for the six coor-
dinates, and eight results are written to XM at the end. The calculation requires 69
multiplications, and somewhat fewer additions. The total time to generate the
results for one pair is t, = 69/2.86 Mflop + 62/10 MHz = 30.3 ps.

The total time required for the P board to process a central atom is
t ca,c FZ nt, + n(n - 1) tJ2N, = 773 ps, where we have assumed that n = 16 and
Nc = 4. The time to load and unload the board can also be estimated. The coor-
dinates of the central atom and its neighbors in the approximate pair list are trans-
ferred from M to the P board at the start of the calculation. Each transfer takes
four cycles at 10 MHz, and there are 3(n + 1) transfers, so the input stage takes
20.4 ps. At the end of the force calculation the M board is accessed to read current
values for the energy, the force on the central atom, and the forces on the n
neighbors; these are incremented by the values in the XM memory and the updated
values are written back to the M board. This involves mend = 3(n + 1) + 1 transfers
from the M board to SM, mend transfers from XM to SM, mend additions, and mend
transfers from SM to the M board. The additions are performed in three chip sets,
and the total time for read/modify/write is approximately 53 ps. Therefore the
total transfer time for input and output is t,,,,, = 73.4 ps. Thus, from Eq. (4), the
total number of P boards that can be used without degrading performance is
N, = (773 + 73.4)/73.4 = 11.5.

We now discuss the actual speed achieved with the current version of the MD
code. On one board, the theoretical speed is 22.8 Mflops, assuming all four chip sets
are used, and both the ALU and multiplier are performing operations at all times
(two operations every seven cycles). Because of data dependencies, the ALU and
multiplier cannot perform concurrently for all of the 25 additions and 25 multiplica-
tions involved in the triplet calculation. The triplet code actually produces an
average of one operation every 5.9 cycles, instead of one every 3.5 cycles for perfect
concurrency. The time for one triplet calculation in a chip set is 14.75 ps. Thus, the
maximum speed of the triplet calculation is 13.6 Mflops per board, assuming that
all four chip sets are fully loaded with data at all times. The data transfer time for
four triplet calculations varies from 16 to 34 ps, depending on whether the new
triplets can use the data for one of the pairs already stored in SM. Both the data
transfer time and the calculation time are somewhat larger than our estimates. The
calculation of all triplets associated with a pair utilized 6.6 Mflops of the
13.6 Mflops possible. It is possible to significantly decrease the data transfer time
and to approach closer to 13.6 Mflops limit, but it is shown below that other parts
of the algorithm would severely limit the overall gain in speed.

The average speed for the entire force calculation is 4.7 Mflops per board. This
is somewhat smaller than the triplet speed because of the necessity to access data

SPECIAL PURPOSE COMPUTER 331

from the slower memory LM during the pair calculation. For one central atom, the
force calculation, tcalc is 1.57ms and the data transfer time, t,,,,, is 0.20ms. The ratio
of the total time a board is occupied with a central atom to the data transfer time,
1.77/0.20 = 8.85, shows that we can keep nine boards busy for the force part of the
calculation. To do the force subroutine on a one-board system, the data transfer
and the calculation are done sequentially, so the actual speed we achieve is
4.1 Mflops. In Fig. 8, the crosses (+) indicate the speedup achieved for the force
calculation as a function of the number of boards. The performance factor is
normalized by the one-board system, where the data transfer between P and M
occurs without delay. It agrees very well, with a 7.8-fold speedup with eight boards.
Therefore, the 8-board system achieves a speed of 32.0 Mflops for the force part of
the calculation. As mentioned above, we can reduce the time it takes to do the
triplet calculation (currently limited by data transfer between XM and SM).
However, with an 8-board system we would then become limited by data transfer
between the M board and the P board, so unless we can decrease that time, we will
not actually see a speedup.

We have also evaluated the overall processor speed versus N,, and this data is
represented by the squares (0) in Fig. 8. Because parts of the code, such as
updating positions and velocities, have not been optimized to use more than one
board, they start to take a larger fraction of the time, up to 15% for the 8-board
system. Therefore, the actual speedup for the 8-board system is a factor of 6.8. The
8-board version of ATOMS is twice as fast as the Cray XMP for n = 16, and is

30% faster for n = 8.

10

8

0 2 4 6 a 10

NP

FIG. 8. Speedup as a function of N,, the number of P boards (speedup = time for MD calculation
with one P board/time for MD calculation with N, P boards). The squares (0) show the overall speed
for the entire calculation, whereas the crosses (+) show the speed of the force calculation only.

332 BAKKER ET AL,

4.2. Finite Difference Equations for Fluid Flow

A program to simulate convection and other phenomena in a fluid confined to
a cavity has also been implemented on ATOMS. Fluid flow is induced by a non-
uniform temperature imposed at the boundaries of the cavity. Studies of conditions
leading to laminar or turbulent flow in two dimensions have been performed.
Navier-Stokes equations were solved using a SIMPLE finite difference algorithm
[181. A 90 x 90 grid was employed in a simulation of a square cell. A 3-board
ATOMS system was used for the calculations, with the P boards running as closely
coupled processors (connected to their neighbors with NL and NR). The problem
was divided among the processors by assigning each one a domain of the cell
consisting of 30 rows of grid points.

The parameters describing the system properties at each grid point are: (i) com-
ponents of the flow velocity U, and u,, (ii) the pressure p, (iii), the turbulent kinetic
energy k, (iv) the energy dissipation E, and (v) the enthalpy h. Current data for the
three domains are maintained in LM on each processor board; the data in the M
board are not updated at the end of each iteration, in contrast to the MD code
discussed above. All calculations for the evolution of the system parameters at the
points in a given domain are copied from LM to XM. New parameters for the
center row of the three can then be calculated with transfers between XM and SM
only. Parameters at the boundary adjacent to another domain are required for the
calculations in that domain and are transferred to the corresponding P board using
the NL and NR interfaces.

A typical example is the calculation of one of the four coefficients needed for a
new value of u.,. This routine uses all four chip sets, operating in SIMD mode, and
each one works with data from a different grid point. At the beginning, all four
SM-A and SM-B memories are initialized with common parameters required for all
grid point calculations. These parameters are stored in eight of the 32 locations in
SM. Then the four SM-A memories are loaded with data from XM for the first four
grid points in the row, the X side is switched to SM-B, and the floating point
program is started on the job of processing the data in SM-A. Data for the next
four grid points are loaded into SM-B at the same time that the floating point
program is running. All calculations are performed in double precision. Eight
parameters are sent to each of the SM-B memories, and they occupy 16 of the 32
locations. The transport of one parameter to each of the four SM-B memories
requires 11 cycles (10 MHz clock), three cycles overhead at the start and eight more
for the eight 32-bit words. Thus, the time to load all eight parameters is 8.8~s. The
optimum calculation time for the 25 double precision operations performed in this
example is 6.88~s (11 20-MHz cycles per operation, both chips working in parallel).
At the end of the routine, three parameters are transferred from SM to XM, and
a pointer to the location of a new set of data in XM is updated; this process
requires 3 x 11 lo-MHz cycles, or 3.3~s for all chip sets. Data transport between
XM and SM probably limits the speed of the routine, since the optimum calcula-
tion time of 6.8,~ is much less than the time required for transport and pointer

SPECIAL PURPOSE COMPUTER 333

updating. The total time for the routine is expected to be 12.1~s per grid point. As
shown by this example, the efficiency of utilization of the floating point chips
depends critically on the amount of data transport and pointer manipulation
involved in each routine. The efficiency ranges from 20 to 60% for the routines used
in the finite difference algorithm. The overall performance of the program has an
average efficiency of about 30%.

One iteration involves updating all 30 x 90 grid points on a given board. This
includes 600 floating point operations for each grid point, or 1.62 x IO6 operations
for all 30 rows. Data transport to neighboring boards does not slow the processors
significantly. Even if the P boards were to operate at 100% efficiency, the calcula-
tion of the 600 operations on all of the grid points in the domain would take
600 x 90 x 30 x 11 cycles/(8 processors) x 2 x 10’Hz = 0.11s. The time to transfer
data for a row of 90 grid points to the neighboring board is relatively small; ten
double precision values per grid point gives 900 double precision words, each
requiring 40 cycles at 10 MHz, or a total of 0.0036s. The time for transport to two
adjacent boards is therefore less than 2% of the computation time. It should be
noted, however, that this data transport cannot proceed in parallel with other
operations on the P board, and this time is added to that for the computation.

7. CONCLUSIONS

We have designed and constructed an algorithm-oriented parallel processor for
molecular dynamics calculations that is based on a shared memory architecture. We
have implemented a system that operates as a MIMD parallel processor with up to
16 P boards. In addition, each P board has four floating point chip sets which
operate in a SIMD mode. Each chip set ir.:ludes a 2.86 Mflop adder and multiplier
and two dual-port registers for data transfer between the local memory on the P
board and the floating point chips.

The current MD code for multicomponent systems uses all tour chip sets for the
computationally intensive triplet calculation of the Stillinger-Weber potential, and
a single board is 50% faster than an Alliant FX4 for the same calculation. The
8-board system is more than six times the speed of a single P board and is faster
than the Cray XMP for the same problem. The processor will be even more efficient
for 4-body and higher interactions. With 4-body interactions the number of calcula-
tions scales as n3 but data transfer scales as n, so higher order interactions can keep
more P boards busy without bus contention. By similar reasoning, it is also more
efficient for long-range interactions.

In addition to using ATOMS as a shared memeory machine, we have taken
advantage of the direct linear connections between P boards for finite difference
calculations. We have found that the machine is efficient for these types of
problems, provided that appropriate “local” algorithms are employed.

The total cost of a system with ten P boards is $115,000. This includes $18,000

334 BAKKER ETAL.

for the MicroVAX II host, $9000 for each P board, $3000 for C and I boards,
$2000 for the card cage, bus connectors, and fan rack, and $2000 for a four Mbyte
M board. We have included the cost of manufacturing the multiwire P and C
boards, but the labor-intensive socket and chip insertion and debugging operations
were performed by us and are not included. The cost of the P boards is based on
the inclusion of one WTL1164 and one WTL1165 chip per chip set, and $4300 of
this is associated with these chips together with the WTL1066 memories.

We have constructed and tested 21P boards and four C boards. We operate two
“production” systems with eight boards each and running 24h a day; and use two
smaller systems for finite element calculations and testing. This is one of the most
powerful systems available for molecular dynamics investigations of materials. The
production systems are currently being used to study silicon solidification and
nucleation, silicon/germanium epitaxy, and related problems. We have repeatedly
demonstrated the effectiveness of ATOMS for interactive investigations of small
systems, and for studying large systems and slow processes in the batch mode.

ACKNOWLEDGMENTS

We acknowledge Joseph H. Condon for getting this project started. Essential to the success of the
project were the suggestions and technical expertise of a large number of people. Accordingly, we
would like to acknowledge T. D. S. Duff, E. H. Grosse, P. Hillner, A. G. Hume, B. W. Kernighan,
T. J. Kowalski, W. Moy, D. L. Presotto, E. J. Sitar, F. H. Stilhnger and N. T. Wilson. One of us (A. F. B.)
also thanks J. W. de Bruin, D. A. van Delft, and F. F. van der Vlugt.

REFERENCES

1. F. F. ABRAHAM AND J. Q. BROUGHTON, Phys. Rev. Lett. 56, 134 (1986).
2. M. D. KLUGE, J. R. RAY AND A. RAHMAN, J. Chem. Phys. 87, 2336 (1987).
3. W. D. LUEDTKE, U. LANDMAN, M. W. RIBARSKY, R. N. BARNETT, AND C. L. CLEVELAND, Phys.

Rev. B 37, 4647 (1988).
4. G. H. GILMER AND M. H. GRABOW, AND A. F. BAKKER, Mat. Sci. Eng. B 6, 101 (1990).
5. M. SCHEIDER, I. K. SCHULLER, AND A. RAHMAN, Phys. Rev. B 36, 1340 (1987).
6. R. BISWAS, G. S. GREST AND C. M. SOUKOULIS, Phys. Rev. B 38, 8154 (1988).
7. F. H. STILLINGER AND T. WEBER, Phys. Rev. B 31, 5262 (1985).
8. D. HAMANN AND R. BISWAS, Phys. Rev. Lett. 55, 2001 (1985).
9. J. TERSOFF, Phys. Rev. Left. 56, 632 (1986); Phys. Rev. B 37, 6991 (1988); M. I. BASKES, Phys. Rev.

Lett. 59, 2666 (1987).
10. J. L. GUSTAFSON, G. R. MONTRY, AND R. E. BENNER, SIAM J. Sci. Stat. Comput. 9, 609 (1988).
11. A. F. BAKKER, C. BRUIN, F. VAN DIEREN AND H. J. HILHORST, Phys. Lett. A 93, 67 (1982); A. F.

BAKKER, in Computer-based microscopic description of the structure and properties of materials,
Proceedings, Vol. 63, (Materials Research Society, Pittsburg, PA, 1986), p. 181 and see references
therein.

12. D. J. AIJERBACH, W. PAUL, A. F. BAKKER, C. LUTZ, W. E. RUDGE AND F. F. ABRAHAM, J. Phys.
Chem. 91, 4881 (1988).

13. A. RAHMAN, Phys. Rev. A 136, 405 (1964).
14. B. P. VAN EIICK AND J. KROON, J. Mol. Structure 195, 133 (1989).

SPECIAL PURPOSE COMPUTER 335

15. M. KARPLUS, A. T. BRUNGER, R. ELBER AND J. KURIYAN, Cold Spring Harbor Symp. Quant. Biol.
52, 381 (1987).

16. M. H. GRABOW AND G. H. GILMER, in Semiconductor-Based Heterostructures: Interfacial Structure
and Stability, edited by M. L. GREEN, J. E. E. BAGLIN, G. Y. CHIN, H. W. DEKMAN, W. MAYO
AND D. NARASINHAM, (Metallurgical Sot., Warrendale, PA, 1986) p. 3; G. H. GILMER AND

M. H. GRABOW, J. Metals 39, 19 (1987).
17. R. W. HOCKNEY AND J. W. EASTW~QD, in Computer Simulation Using Particles (McGraw-Hill,

New York, 1981).
18. The SIMPLE algorithm was implemented in order to distribute local regions of the chamber to

different P boards; for a description of the method see S. V. PATANKAR, Numerical Heat Transfer and
Fluid Flow (McGraw-Hill, New York, 1980).

