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We have constructed a computer facility for interactive study of atomic systems, with fast 
turnaround between simulation runs. The computer includes a large external memory which 
is shared by up to 16 parallel processor boards. Each processor board contains four fast 
floating point chip sets, also operating in parallel. A host computer running the UNIXR 
operating system is used to assemble and download instructions to the processor boards and 
to transfer atomic coordinates to the memory. A machine with eight processor boards has a 
theoretical speed of 182 Mflops, and runs molecular dynmics code 30100% faster than the 
in-house supercomputer. The architecture was chosen specifically for applications involving 
molecular dynamics code, using a new implementation of the algorithm, but it has also been 
programmed for finite difference calculations. In general, it should be effective for simulations 
of physical systems that can be subdivided into cells, such that the material of a cell is 
influenced only by local interactions. % 1990 Academic Press, Inc. 

1. INTRODUCTION 

There has been much progress in recent years in the development of atomic scale 
models of materials. These models have proved to be powerful tools for the deter- 
mination of the structure of interfaces, thin films, liquids, and glasses. They are also 
useful for simulations of the processing of materials, since they provide detailed 
information on atomic movements and mechanisms. Melting and solidification of 
silicon [l&4] and molecular beam epitaxy [S, 61 are some of the processes that 
have been studied recently. 

The molecular dynamics (MD) method involves the determination of atomic 
trajectories for a group of interacting atoms. Given the initial positions and 
velocities of the atoms, and a set of interatomic potentials that describes the 
interaction between atoms, the force on each atom is calculated. The force is used 
to calculate the new velocity and position of each atom at a time dt later, using 
classical equations of motion and an approximation scheme to extrapolate to time 
d t. This process is repeated until the desired time period for the simulation has been 
spanned. The time step At used in the integration scheme must be short compared 
with, e.g., the vibrational period of an atom in a crystal. 

* Permanent address: Applied Physics Department, Delft Technical University, 2600 G.A. Delft, 
The Netherlands. 
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The interatomic force is of short range in many systems including semiconduc- 
tors, and existing potentials extend to about 10 to 100 neighbors. Although pair 
interactions, in particular the Lennard-Jones potential, have been used extensively 
for MD simulations of close-packed materials, they are unable to stabilize the 
relatively open structure of the diamond-cubic lattice. The interaction between the 
atoms in silicon has recently been modeled using a combination of pair (2-body) 
and triplet (3-body) interactions [7, 81, or a more general multi-body term [9]. 

General purpose supercomputers are not designed for efficient MD calculations, 
but for solving a wide range of problems. Furthermore, such computers typically 
achieve large peak speeds by using vector floating point hardware or by parallel 
processing architecture. In either case it has not been possible to achieve efficient 
use of the floating point processors, because of the difficulty of writing compilers 
that can optimize general code for complex architectures. In most cases only a small 
fraction of the theoretical speed is utilized. As the trend moves towards parallel 
architectures with many processors, optimization may become increasingly difficult, 
although there has been some recent progress [lo]. 

For applications that have straightforward algorithms and that require large 
amounts of computer power, one alternative is to design the hardware to suit the 
algorithm [ 11, 121. If an algorithm is efficient for a particular architecture, it is 
possible to achieve high speeds at relatively low cost. Fast scalar floating point 
chips are now available at low cost; a $400 Weitek chip can perform up to three 
million floating point operations per second (3 Mflops). We have designed a 
processor ATOMS with a parallel architecture that can keep the floating point 
processors busy much of the time when running our MD code. In this sense, it is 
an algorithm-oriented processor. It is, however, fully programmable and is also 
efficient for other calculations. Because of the simplicity of the shared memory 
architecture, it was possible to construct and program the processor in an acceptable 
time period using available microprocessors, floating point chips, memory elements, 
and other components. 

In the next section, we describe the amount of computer power needed for MD 
simulations, which provided the motivation for this project. Section 3 is a brief 
summary of the MD technique using 2- and 3-body forces. Section 4 contains an 
overview of architecture of ATOMS, and a more detailed description is given in 
Section 5. In Section 6 we discuss the specific computing requirements for our 
implementation of the MD technique, with some of the timing considerations that 
went into the design of our current version for ATOMS. Also included is a brief 
discussion of the efficiency of ATOMS for finite element calculations of fluid flow 
problems. Section 7 is a summary of our experience to date working with ATOMS. 

2. COMPUTER REQUIREMENTS 

Molecular dynamics methods have been applied to models for the study of the 
structure of liquids and radiation damage for over 30 years [ 131. Initially they were 



SPECIAL PURPOSE COMPUTER 315 

limited to problems with short time scales and were practiced only at locations with 
large computer facilities. Later, increases in computer power made it possible to 
perform useful calculations on dedicated minicomputers, and many more 
investigators became involved. A wide variety of systems has now been studied, 
including diatomic molecular liquids, water, hydrocarbons [ 141, large molecules, 
e.g. proteins [ 151, and solid interfaces and surfaces. 

In all of these applications, the shortest relevant time scale for atomic motion is 
v-l, where v is a vibrational frequency for an atom in a potential energy well. The 
time step At used in the integration scheme must be small, such that v At < 1, and 
typically At E O.O5v-‘. The simulation of several thousand atoms for a time longer 
than a few vibrational periods clearly requires a large number of floating point 
operations. 

The actual time required for a simulation depends on the type of simulation 
being performed, the properties of the system, and the rates of any dynamical 
processes involved. Molecular statics simulations are usually the least computer 
intensive, since they involve the relaxation of an initial configuration of atoms to a 
local minimum in the potential energy. These calculations provide information on 
the zero Kelvin structures, and have been used to test out interatomic potentials on 
surface reconstructions and gain boundaries, to calculate the energy of defects (e.g., 
dislocations) and to look at the structure of a protein molecule. Since a unique 
point in configuration space is calculated, the energy and other properties can be 
obtained to high accuracy without the statistical uncertainty inherent in finite 
temperature simulations. 

The ability to generate a number of configurations quickly is crucial to molecular 
statics investigations, since often the ground state must be selected from a number 
of relaxed states. As an example, the equilibrium density of misfit dislocations in a 
thin epitaxial film can be calculated by preparing a number of initial states with 
different dislocation arrays [16]. The initial configurations are allowed to relax 
with dissipative forces and the chemical potentials of the resulting states are 
calculated from the potential energies. A configuration with 500 atoms interacting 
with Stillinger-Weber forces must be simulated for about lo4 time steps to 
approach the minimum potential energy. For a crystal at finite temperature, the 
four nearest neighbors and approximately four of the 12 next-nearest neighbors 
interact with the central atom, and the calculation takes about 1.5 days on a 
computer in the one Mflop range, such as the VAX 780; 4.5 h on an Alliant FX4; 
24 min on a Cray XMP (one processor), and 18 min on ATOMS configured with 
eight processor boards. Therefore, the VAX 780 or Alliant must be operated in 
batch mode, while it is clearly feasible to do rapid exploratory work on small 
systems with ATOMS, and also with the Cray, if it is not being shared too heavily. 
We note that the times given for the general purpose computers were measured 
using existing Fortran code written by us and which we have used at some stage 
for production MD calculations. Different algorithms were used in some cases in 
order to more effectively utilize the computer capabilities, but we do not claim that 
this code is beyond improvement, of course. Furthermore, all calculations on the 
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Cray and VAX were made in double precision, whereas most of the force 
calculations on ATOMS were made in single precision. Single precision is adequate 
for most MD simulations. 

Equilibrium MD simulations are used to study phase transitions, diffusion of 
atoms in liquids and on surfaces, and general equilibrium properties of materials at 
finite temperaturesThese calculations can require sizable computer resources. First, 
it is essential to equilibrate the system for a time greater than a correlation period; 
i.e., the time required for the system to assume a structure that is only weakly 
correlated to that of the initial state. This time depends on the system and the 
parameter that is being measured, but for viscous liquids or those with boundaries 
between coexisting phases, it can be quite long. In some cases it is necessary to test 
several different initial configurations to ensure that the system is not trapped in a 
region of phase space with a local minimum in the free energy. Second, 
the measurement of time-averaged properties usually includes a large statistical 
uncertainty. Often one is tempted to assign physical reality to changes in the 
properties which are, in fact, large statistical fluctuations. The time required to 
obtain reliable averages is considerably longer than the correlation period. 

Finally, non-equilibrium MD is used for studying transport coefficients, the 
dynamics of a system subjected to a sudden change in conditions, or the structures 
and mechanisms that occur during the processing of materials. In practice, most 
MD simulations are limited to extremely short observation times, when measured 
in terms of the simulated physical system. Models with 1000 or more particles are 
usually simulated for less than a nanosecond (1 ns z 500,000 time steps). Many 
physical processes are simply too slow to permit direct MD simulations. For 
example, the relaxation of glasses, crystallization of liquids, dislocation climb, and 
diffusive aggregation of defects often do not advance appreciably in a nanosecond. 
One interesting process that does occur on this time-scale is the solidification of 
silicon, which has been measured experimentally to have crystal-melt interface 
speeds up to 15m/s. At this speed the interface moves 158, in a nanosecond, and this 
is the minimum time required to obtain useful information. However, most 
processes involving crystal surfaces are limited by the rate of surface mass transport. 
The surface diffusion coefficient D, has a maximum value near the melting point 
approximately equal to the diffusion coefficient in the melt; i.e., D,, < 10e4cm2/s. 
A simulation time of 0.1 ns would be required for one atom to diffuse an average 
distance of 5A. Simulation of molecular beam epitaxy with, for example, a 7 x 7 
reconstruction on a (111) face of silicon would require even longer runs, and it 
would perhaps be necessary to run a system with 2000 atoms for lo6 time steps. 
This would provide information on the transformation of the 7 x 7 symmetry to 
that of the bulk as the surface layer is covered up by the new material arriving from 
the vapor. This one run would require nearly two years on a VAX 780, but only six 
days on an &board version of ATOMS. Thus, dedicated special-purpose computers 
operating in batch mode make it feasible to study new problems. 

There are two additional considerations that go into simulating all of the applica- 
tions discussed above. First, an iterative procedure is often required. For example, 
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to determine a transition temperature for a phase change, a simulation is initiated 
at the estimated temperature, and, after the run is completed the data are evaluated 
and used to make a new estimate for the next run. This process is repeated until 
the temperature is determined to the desired accuracy. Second, most MD systems 
are quite small, and the size dependence of the results should be measured. Again, 
this requires additional simulations of different systems under identical conditions. 
Clearly the turnaround time between runs is the limiting factor in assessing the 
behavior of the system. 

A major goal of this project was to construct a computer with sufficient computa- 
tional power that short molecular dynamics jobs and molecular statics computa- 
tions could be carried out interactively, with the uninterrupted attention of the 
investigator. This requires enough power to simulate atomic motion for several 
nanosecnds per day. Currently an eight processor system running for one day can 
simulate a nanosecond for a configuration of 500 atoms with eight interacting 
neighbors, assuming a relatively simple potential such as that of Stillinger and 
Weber. 

3. ALGORITHM 

We will now discuss an efficient algorithm for molecular dynamics simulations 
when the interatomic potentials involve both 2- and 3-body interactions. The input 
data consist of initial positions and velocities of the atoms and a set of interatomic 
potentials. The MD algorithm then involves updating positions, calculating new 
forces, updating momenta; and, typically, the gathering of statistics (e.g., 
thermodynamic averages and correlation functions). 

The two issues that must be addressed for each part of the algorithm are (i) the 
number of calculations and (ii) the amount of memory that is required. The number 
of calculations required to update positions and momenta scales with N, the 
number of atoms in the system. In principle, the force calculation scales as N* when 
only 2-body interactions are included, and as N3 when 3-body interactions are 
present. However, this number is much smaller in the case of potentials that are of 
short range, and can be truncated after a distance rc of several atomic radii. 

Several techniques are used to reduce the required number of calculations for 
potentials of short range. The linked list method [17] speeds the force calculation 
on atom i, since it provides lists of atoms occupying cells that are subdivisions of 
the computational box. This results in a force calculation scheme of order N, 
independent of the type of interactions that are included. When memory space 
allows, an approximate pair list may also be calculated. This provides a more 
precise list of neighboring atoms than that obtained with the linked list. Our MD 
code includes both techniques. Associated with each atom is a list of neighbors that 
were within a distance r, at the time it was compiled. The magnitude of rm is 
chosen to be somewhat larger than the force cutoff, rr. To facilitate this calculation, 
linked-list cells are used. The edge length of a cell is chosen to be greater than or 
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equal to r,,,. Neighbors in the same cell and in the surrounding 26 cells are tested 
for inclusion in the approximate pair list. The approximate pair list is used for ten 
time steps, and r,,, is chosen to be larger than r,. by a sufficiently large margin that 
atoms beyond the larger sphere will not drift into the smaller one during this 
period. The memory space required for such a list scales with Nn, where n is the 
average number of neighboring atoms in the pair list. 

We now consider the force scheme when 3-body interactions are included. The 
energy of the system can be expressed as: 

E= c Vc2’(r,) + C +3)(ri, r,, rk), 
v;i<, ijkik;icjck 

(1) 

where VC2) is the 2-body interaction and rii is the distance between atoms i and j. 
VC3) is the 3-body interaction which for the Stillinger-Weber and Biswas-Hamann 
potentials can be written as: 

V(3)(riy ‘j’ rk) = h(rqy rik, ejik) + h(rji, rjk, 0,) + h(rki, rkj, 8j&), (2) 

where ejik is the included angle between atoms j, i, k. The first term of this sum, 
h(ri,, rik, !!I@), involves atom i at the apex of a triangle, with legs ri/ and rik. This 
term will contribute a force Fj= -ah/&, to atom j and a force Fk = --t3h/i?r, to 
atom k, as well as a force F, = -ah/&, to atom i. Since the sum of the forces must 
be 0, the force on atom i is usually evaluated as Fj = - (Fj + Fk). Each 3-body term 
in the potential of (2) is a product of three terms, 

NT,, rik, Ojik) =S(rij)f(rik) g(COS ejik), (3) 

in the Stillinger-Weber and Biswas-Hamann potentials. This feature simplifies the 
use of lookup tables for the potentials and makes possible the very efficient MD 
algorithm discussed below. 

The algorithm for calculating forces should be considered carefully. In the case 
of triplet forces satisfying Eq. (3), an efficient method can reduce computation 
time by more than an order of magnitude compared to a simpler approach! There 
are two commonly used algorithms for this calculation. The method used most 
frequently is to calculate the total pair force on all atoms, and then the total force 
due to 3-body interactions. The triplet calculation does not make use of any 
information generated for the pairs, and the triplet terms in Eq. (3) are calculated 
from scatch for each triplet. This can be extremely time consuming, since each 
triplet requires two calculations of the exponential inf(rii). The second option is to 
consider each atom in turn and first calculate all pairs with the given atom and the 
associated forces and then all triplet forces with the specified atom at the apex. 
During the pair calculation, the f(rii) are also computed and saved. Only the pairs 
with rii< rr are passed on to be used in the identification of the triplets. This 
approach avoids the necessity for maintaining a complete triplet list with the 
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associated memory allocation and does not repeat calculations of rij and other 
parameters for the 3-body forces that have already been performed for the pair 
forces. This approach also eliminates the need for recalculatingf(rii) for each new 
triplet that contains the ij pair. Since the number of triplets containing a given pair 
scales with n, this can have a very large effect on the efficiency. This scheme also 
generalizes for the Tersoff potential [9], and for any scheme where the n-body 
terms are simply combinations of pair terms. The MD code for ATOMS 
implements the second approach. 

4. GENERAL ARCHITECTURE 

The algorithm described in Section 3 maps very well onto a parallel computer 
architecture, and motivated the design and construction of ATOMS. There are two 
key features of the algorithm. First, the time required for each part of the program 
scales as N (updating positions, calculating forces, and bookkeeping). Second, the 
most time consuming part (97%) of the algorithm is the force calculation and the 
associated bookkeeping. Therefore, we have concentrated on the implementation of 
the force calculation to determine an effective computer architecture. 

There are many ways to perform independent force calculations in a multi- 
processor system. They differ mainly in the method of distributing the data for 
processing. In a shared memory machine a current and complete set of data is kept 
in the shared memory, and data are sent to each board in turn, along with a data- 
manipulation task. Inter-processor communication is not required since each 
processor board accesses the data directly. In a distributed memory machine, where 
a some of the data are kept in local memory on each processor, inter-processor 
communication may limit the efficiency. It can be effective when applied to local 
problems that can be programmed in such a way that a processor needs to 
communicate only with a small group of neighboring units. However, the 
programming of the communications can be quite difficult. 

A shared memory architecture has the restriction that the number of processors 
is limited by the bandwidth of the common data bus, since all processors must 
access this memory. For a given number of processors, it is most efficient when the 
algorithm involves a large number of calculations based on a relatively small data 

FIG. 1. Basic components of the shared memory machine, ATOMS. 
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set. The number of the data required for a 3-body force calculation scales as the 
number of neighbors n, and the number of calculations scales as n2. For sufficiently 
large n, the shared memory architecture is a good solution. We find that the shared 
memory architecture of ATOMS is efficient for the Stillinger-Weber potential, and 
therefore it should be effective for most other potentials that have been developed 
for semiconductor systems since they involve more complex n-body calculations. 

ATOMS is a multiple instruction, multiple data (MIMD) parallel computer. The 
basic components are shown in Fig. 1. All boards in ATOMS are interconnected 
through a single VME-bus, which is interfaced to the Q-bus of the host, a 
MicroVAX II. The system consists of an interface (I) board, one or more memory 
(M) boards, one control (C) board, and many identical processor (P) boards. The 
backplane can accommodate up to 16 boards. 

The M board is the shared memory. The VME-bus is the only data channel 
between all boards and is controlled either by the C board or by the host through 
the I board. The host controls the VME-bus to download microcode for the C and 
P boards and accesses the M board to transfer data. The C board controls the 
VME-bus to transfer data between the M board and the C and P boards. As 
indicated in Fig. 1, there are also connections for transferring data between adjacent 
P boards, so in addition to operating as a shared memory machine, ATOMS can 
operate as a linear processing array. 

The P boards perform the floating point operations. There is a second level of 
parallelism in the architecture of ATOMS, since each P board contains four identi- 
cal floating point chip sets. However, these chip sets are controlled by one instruc- 
tion flow, so this part of the architecture is single instruction, multiple data 
(SIMD). Each chip set contains at least one arithmetic logic unit and one multi- 
plier, and the instruction flow is designed to keep both chips working at the same 
time. 

A picture of the hardware with two P boards is shown in Fig. 2. The processor 
is mounted in a standard 19 inch rack, and the P boards are 9U x 40cm 
Euroboards. 

In addition to our goal of constructing a fast, efficient processor suitable for the 
MD algorithm, we had some additional requirements. First, the floating point chips 
should have available both single and double precision arithmetic. This provides 
the flexibility to simulate a variety of physical systems with different requirements 
on the precision of the results. Second, the floating point section should be 
relatively simple to program, since small changes to the code are often desired (e.g., 
different integration scheme, different form for the interatomic potentials, or a new 
correlation function). 

FIG. 2. Photograph of 2-board machine. Boards visible here are, from left, the C board, the I board 
(edge visible with two cables connected to it), the M board, and the two P boards. The Weitek floating 
point chips are in the bottom row on the P board, the dual port SM chips are in the row above, the 
microprocessor XP is the square chip near the center, and the LM printed circuit boards are to the left 
of center and bent at an angle to the P board. 
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5. DETAILED ARCHITECTURE 

5.1. M Board 

The shared memory M is a commercially available dynamic ram board for VME- 
bus applications, and can be obtained in 4, 8, and 16 Mbyte sizes. Multiple M 
boards can also be accommodated to extend the capacity further, with each 
occupying one of the 21 slots on the backplane. 

5.2. C Board 

The C board is a custom multiwire board, with commercially available chips. It 
has its own microprogrammable control, with a 100 ns cycle time. The C board 
contains a 64k x 32 bit fast static memory XM and a 16-bit processor XP, the 
Advanced Micro Devices AM29117. They are interconnected by a 16-bit address 
channel, the A-bus, and a 32 bit data channel, the X-bus, as shown in the diagram 
in Fig. 3. 

XM is addressed by a 16-bit address counter/register xmac, which can be loaded 
by the A-bus and incremented or decremented. A bidirectional latch xml interfaces 
the 32-bit data with the X-bus. One cycle is required for a read or write operation, 
including the transfer over the X-bus to its destination. 

The external memory M on the VME-bus is addressed by the C board. This is 
accomplished by a 24-bit address counter/register Imac, which can be loaded by the 
A-bus in two portions, and incremented or decremented. The address is fed to the 
VME address bus via address register Zmar. Three cycles are required for a read or 
write operation including the transfer over the VME-bus. 

vMt-l3us vMt-l3us 

I I I 
A-bus (16 b&s address) A-bus (16 b&s address) 

1 1 
m 

1 1 1 1 1 1 1 1 xpor xmac lmac lmac sreg sreg ireg ireg padr padr 

Q 
I I 1’ 1’ ’ 

h-tar h-tar 
XP XP XM XM 
16b 16b ah x 32 ah x 32 

StatUs i”rrr”ction 

/ / / / / 

xpir xpir Xflll Xflll 132 132 /16 112 /e 

1 1 t-t I b 
0 0 

b b t t 1 t 
X-bus (32 MS data) X-bus (32 MS data) 

t 
loM loM ml BP P addr 

FIG. 3. Components of the control board (C). 
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The XP microprocessor is used for address generation, loop counting, and other 
operations involving integer arithmetic. The X-bus supplies XP with input data via 
its 32-bit input register xpir. The most or least significant part of xpir can be 
selected as input for the processor XP. The output of XP is the A-bus, which feeds 
xmac and lmac and a 32-bit output register xpor. This register can be loaded in two 
16-bit portions, and its destination is the X-bus. 

Additional A-bus destination registers are present: sreg supplies I with status, ireg 
supplies P with microprogram start addresses, and padr selects each P board based 
on its unique board address. When a P board is selected it can accept an instruc- 
tion or is able to use the VME-bus for data transfer under control of the C board. 

A microprogrammable instruction flow runs the entire C board. A 4k x 64 bit 
writable control store (WCS) contains the microprogram, which is downloaded 
from the host. An Advanced Micro Devices AM2910 sequencer is used to generate 
the microprogram addresses, the contents of which are stored in a microprogram 
instruction register. An instruction stream is fed to the C board at 10 MHz; this 
allows nested subroutines, conditional jumps, and other powerful commands. 

5.3. P board 

The P board consists of two sections, an X section that is very similar to the C 
board, and a floating point section F. The X and F sections each have their own 
microprogrammable control, as shown in Fig. 4. X has a 100 ns cycle time, but the 
floating point part F has a 50 ns cycle time. X stores and controls the transfer of 
data whereas F executes the floating point operations. 

h ?I X-SIDE ; F-SIDE 

NL NR 

FIG. 4. Components of the professor board (P). 
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We first consider the X part of the P board. As in the C board, the data path 
of X contains a 64k x 32 bit fast static memory XM and a 16-bit processor XP, the 
AM291 17. A major difference is the presence of a 1M x 32-bit dynamic memory 
LM. This memory is composed of 16 printed circuit boards with nine 256K-bit 
chips on each board. We have also tested the circuit with lM-bit chips, which 
increase the capacity of LM to 4M x 32 bits. Access to LM is similar to that of the 
M dynamic memory from the C board. XP, XM, and LM are interconnected by the 
16-bit address channel A-bus and a 32-bit data channel, the X-bus. 

As in the C board, XP is supplied with input data from the X-bus by way of xpir, 
and the output is the A-bus. The XM memory is addressed by xmac and is inter- 
faced to the X-bus by xml in exactly the same way as described for the C board. 
Similarly, xpor is used to transfer output from XP to the X-bus. 

LM is addressed by a 22-bit adress counter/register lmac, which can be loaded 
by the A-bus in two portions and incremented or decremented. Latches lmil and 
lmol interface the 32-bit data with the X-bus. Three cycles are required for a read 
or write operation, including the transfer over the X-bus. 

Other connections to the X-bus are the interface section for the VME-bus (not 
shown), and a bidirectional latch sml to the F part. Also included is interface 
hardware for direct data transfer with two neighboring P boards; NL and NR are 
bidirectional latches with connectors for cables going to the “left” and “right” P 
boards, respectively. This hardware provides the option for running closely coupled 
processors in a linear array. This feature has been useful in finite difference applica- 
tions, where extensive data transfer between boards is essential. 

The microprogrammable instruction flow for the X side is identical to that of the 
C board. A 4k x 64 bit writable control store (WCS) contains the microprogram, 
which is downloaded from the host. The C board supplies X with instructions in the 
form of microprogram start addresses, so that C determines which instruction flow 
will be executed. 

We now consider the F part of the P board, shown on the right-hand side of 
Fig. 4. The F part consists of four identical floating point chip sets. The interface 
of each of these chip sets to the X section is provided by dual port memories labeled 
SM in Fig. 4. These memories are 32 x 32 bit register chips (Weitek 1066), two in 
each chip set. Each chip set contains a 32-bit bus which is connected to the three 
floating point chips. One of the floating point chips is an arithmetic logic unit 
(ALU), which performs additions, subtractions, divisions, and certain other opera- 
tions (Weitek WTL1165) and the second chip is a multiplier (WTL1164). The ALU 
and multiplier operate at 20 MHz, and 7 cycles are required to perform a single 
precision multiply or add, for 2.86 Mflop each. It is possible for the ALU and multi- 
plier to perform operations concurrently, as long as the result from the ALU is not 
needed for the next multiply operation. A socket for a third chip is included; it can 
accommodate either an ALU or a multiplier, or remain empty. This feature was 
included so that the hardware can be easily adjusted for code which has an 
unbalanced number of ALU operations relative to multiply operations. Including a 
second ALU was found to increase the speed of the MD code with the 
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Stillinger-Weber potential by about lo%, but these extra chips increase the cost of 
a P board by about 16%. 

The two SM memories in each chip set are used in a “ping-pang” mode. The 
thick lines in Fig. 5 indicate active data paths at one instant in time. The X side 
(XM in this case) is transferring data to SM-A of chip set 2, while all four chip sets 
are performing calculations on data in SM-B. Therefore, data transfer with X can 
proceed in parallel with the floating point calculations. 

Although the four chip sets of the F section are generally executing the same 
instruction in SIMD, there is the capability of modifying the instruction that each 
set is executing. Each of the four sets has four addressable two bit registers that can 
be used for op-code modification, so that the actual op-code that one set executes 
can be add, subtract, or copy depending on the code in its register. The address of 
the register is the same in all four floating point chip sets. This is used for handling 
periodic boundary conditions in the MD code. Each pair in the approximate pair 
list has an associated eight-bit function code that determines whether the interac- 
tion is direct or is the result of a periodic repetition of the system in the x, .Y, and/or 
z direction. When the pair parameters are processed in a floating point chip set, the 
two-bit registers are loaded from SM with the op-code associated with that pair. 
The calculation of the difference in the x coordinates, for example, incorporates this 
feature to add or subtract the length of the computational box in that direction, if 
necessary. 

Each floating point set has a live-bit status register associated with it to report 
any floating point exceptions and the result of comparisons. The exception bit is set 
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FIG. 5. Data paths between XM and the F side of the P board. In ping-pong mode, transfer data 
from the X side to one of the SM-A, while floating point chips are performing calculations on data in 
all SM-B chips. 
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when one or more exceptions occurs during operations that are specified in the 
code. It can be read by the X side of the P board, and it is cleared by a separate 
command. Three bits are addressable and can be used to report the result of 
comparisons to the X side. The fifth bit is a flag internal to the F side, and can be 
used to change a write to SM-A or SM-B into a “no-op.” This does not change the 
timing of one floating point set relative to the others and permits certain steps in 
the code to be modified if, for example, the distance rii exceeds the cutoff rC. 

There is a separate microprogrammable instruction flow for the F section. A 
4k x 32-bit WCS contains the microprogram, which can be downloaded from the 
host. Here a binary counter is used to generate the microprogram addresses in 
order to guarantee an instruction stream at 20 MHz. Microprogram start addresses 
are received from X. 

The ability to have the ALU and multiplier (and optional third chip) of each 
chip set running concurrently is implemented by an optimizing assembler. The 
assembler takes the user-written code, a sequence of additions, multiplications, and 
divisions, and schedules the floating point chips for the seven cycles of each opera- 
tion. The seven cycles are used for loading the chip with two operands from SM, 
performing the operation, and unloading the result to SM. As shown in Fig. 5, there 
is only one data path from SM to the two (or three) floating point chips, so only 
one chip can be loaded from SM at any time. The assembler allows an arbitrary 
mix of ALU and multiplier chips, so different combinations of chips can be tested 
with the code. 

5.4. Other Boards 

The host interface I consists of two boards, one at the host side and one at the 
ATOMS side, and they are interconnected by a flat cable. Its primary function is 
to connect the ATOMS VME-bus to the host system Q-bus. A separate instruc- 
tion/status bus directly connects the I board to the C board to provide a means for 
the host to supervise ATOMS. In addition, a four-bit code from the host deter- 
mines the connection of the host bus with the VME bus (on or off), and the mode 
of ATOMS for download (reset or start). 

Finally, we note that all memory units in the machine are accessed by two 
different sections, as though they were dual ported. Particle data is put into the 
shared memory M by the host computer. This data is transferred by a program 
running in the C board to the different P boards and stored in XM. From XM the 
particle coordinates are transferred to the four chip sets by means of the 
dual-ported registers SM-A and SM-B. These registers are then used to supply the 
floating point chips, where the calculations are processed. 

6. CURRENT APPLICATIONS 

6.1. Molecular Dynamics 

We have programmed the MD algorithm described in Section 3 for atoms inter- 
acting via the Stillinger-Weber type potential. We can currently handle configura- 
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tions with up to 6400 atoms and with up to 16 different types of atoms (varying the 
size and/or strength of interaction between different types of atoms). The host 
MicroVAX compiles the MD code and downloads the code for the C board and 
for the X and F sections of the P boards. Identical code is distributed to all P 
boards. The force lookup tables are distributed to the LM memories, and an initial 
configuration is loaded into the M board. Execution is begun when an instruction 
start address is sent to the C board. After this point ATOMS is essentially 
autonomous, although it can be instructed to periodically transfer intermediate 
results to the host. This is accomplished by having the C board send a flag to the 
host indicating that it is can take control of the VME-bus in order to access the M 
board, where the results are stored. The host returns control to the C board when 
it has finished reading the data. 

The MD code distributes the force calculation among the P boards on an atom 
by atom basis, as shown in Fig. 6. The P boards are polled sequentially by the C 
board to collect results and distribute new data for processing. The C board trans- 
fers the coordinates of a central atom and its n neighbors (listed in the approximate 
pair list) from the shared memory, M, to one of the P boards. If the P board has 
results from a previous central atom, the forces are accumulated in the M board for 
all affected atoms. If the system is operating efficiently, the C board will select a P 
board for data transfer before it has completed its calculation. That is, no time is 
lost because the P board must wait for a new set of data. In order to achieve this 
condition, the data transfer time with N, P boards must be shorter than the time 
tcalc for one P board to transfer its data and perform its calculations; i.e., 

P Board 1 

PBoard2 

PEbard3 

P Board 4 

P Board 5 

FIG. 6. Activity as a function of time for force calculation of 20 atoms for a Sboard machine; top 
row is activity of board 1, next row board 2, etc., and bottom row is the activity of the M board. 
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where ftrans is the data transfer time for one board. Furthermore, since the number 
of neighbors is larger for some atoms than for others, some P boards may finish 
before others that were selected earlier in the sequence, which can cause a delay for 
these boards. This is most pronounced for inhomogeneous systems, although even 
in this case the fraction of atoms with low n values is usually small, and the reduc- 
tion in efficiency is not important, as will be demonstrated below. If this were a 
problem, a more sophisticated polling scheme could be implemented by a software 
change for the C board. 

The force calculation is performed in two phases. First, force parameters for all 
pairs with the central atom are calculated, including those that will be needed for 
the 3-body calculation. The 3-body parameters are stored in XM for later use. The 
functions that determine the 2- and 3-body forces reside in LM as lookup tables 
which are evaluated by quadratic interpolation. An important consideration with 
such a powerful floating point section is that of supplying data fast enough to keep 
the chips busy with calculations. The dual ported memories SM-A and SM-B 
provide a fast channel between the floating point chips and the XM memory, but 
it should be noted that the microprocessor XP must supervise the transfer of this 
data and can only load one SM memory at a time. Because of the necessity for 
numerous data transfers with both XM and the slower LM, the calculation of the 
pair parameters does not utilize the floating point chips efficiently. However, the 
triplet calculation can then be easily arranged. All parameters in the 3-body forces 
are associated with pairs, as discussed in Section 3, and the forces are obtained 
from all unique combinations of pairs taken two at a time. (Since all pairs include 
the central atom, two of these pairs constitute a triplet.) The large number of 
computations necessary for the 3-body forces can be accomplished efficiently using 
more than one chip set, since the SM memories can be loaded with the necessary 
data directly from XM, as shown in Fig. 5. 

The initial design of ATOMS was based on the characteristics of the 3-body force 
calculation, since this involves the largest number of floating point operations. That 
is, N, and the number of chip sets per board N, were chosen so as to optimize this 
part. An increase I/, and N, would increase the theoretical speed, but this is 
cost-effective only if the data transfer is fast enough to keep the floating point chips 
supplied. In the following paragraphs we discuss the estimates that went into 
choosing the values of N, and N, to implement in hardware, and we also discuss 
how this has worked out in practice. For studying thin film systems, e.g., Ge films 
on Si substrates, atoms in the strained film have 16 neighbors completely within the 
cutoff, rc. The timing estimates given below are for a perfect crystal with n = 16. 

Consider the 3-body force calculation for one triplet with the central atom i; i.e., 
the forces resulting from one of the terms h(r,, rtk, @,,) in Eq. (2). This calculation 
is performed in one of the N, chip sets. The following data associated with pair ij 
must be transferred from XM to SM: r!, ‘, dx,/r,, dy,lr,, dz,lro, f (rii), a force term 
based on f(rij), and the three components of the force on atom j that were 
accumulated in previous calculations. Thus, each pair has nine input parameters 
associated with it, for a total of 18. The results of the calculation are the potential 
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energy h of the triplet and the new totals of the force components on all three 
atoms. Only the forces on atoms j and k are written to XM; since the central atom 
is involved in all triplets, its force components and the potential energy h are 
accumulated in SM. This is six output parameters, or a total of 24 data transfers 
between SM and XM. The time for these transfers is estimated as one cycle each, 
i.e., t = 24cycles/lO MHz = 2.4~s. Since the chip sets must be loaded sequentially, 
the transfer of data for four chip sets takes a total of 9.6~~. In fact, the data transfer 
is slower than the above estimate because of the overhead required for XP to 
calculate the memory addresses. The activities of the SM memories during the 
triplet calculations are illustrated in Fig. 7. 

Once the data is in the SM memory, the calculations for the forces and potential 
energy requires 25 additions and 25 multiplications for the Stillinger-Weber model. 
The optimum calculation time is therefore t = 25/2.86Mflop = 8.74~s, assuming that 
the two operations can run concurrently. Although both estimates are on the low 
side, the data transfer and calculations should be approximately equal for N, = 4, 
and increasing NC beyond this point would result in a data transfer bottleneck. 
That is, there is almost enough time to unload results and load new data with the 
SM-A memories of the four chip sets while the floating point chips are performing 
the calculations on data in the SM-B memories. The total time for performing one 
triplet calculation is the larger of the two times; in the case of our estimates, it is 
the triplet transfer time of t, = 9.6~s. 

W-A 
Chpsell 

W-6 
Ch@ set 1 

Ch@ set 3 

FIG. 7. SM activity as a function of time for triplet calculations. Here the data transfer for four chip 
sets can take place during the calculation time. 
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The time required to generate the pair forces on the central atom is the sum of 
the data transfer and calculation times, since in this case we did not distribute the 
calculation over the chip sets and only SM-A was used. Twelve parameters are 
needed from LM (force and potential energy values for both 2- and 3-body inter- 
actions, three numbers are required for a quadratic interpolation of each); each LM 
to SM transfer takes four cycles. The XM memory is accessed for the six coor- 
dinates, and eight results are written to XM at the end. The calculation requires 69 
multiplications, and somewhat fewer additions. The total time to generate the 
results for one pair is t, = 69/2.86 Mflop + 62/10 MHz = 30.3 ps. 

The total time required for the P board to process a central atom is 
t ca,c FZ nt, + n(n - 1) tJ2N, = 773 ps, where we have assumed that n = 16 and 
Nc = 4. The time to load and unload the board can also be estimated. The coor- 
dinates of the central atom and its neighbors in the approximate pair list are trans- 
ferred from M to the P board at the start of the calculation. Each transfer takes 
four cycles at 10 MHz, and there are 3(n + 1) transfers, so the input stage takes 
20.4 ps. At the end of the force calculation the M board is accessed to read current 
values for the energy, the force on the central atom, and the forces on the n 
neighbors; these are incremented by the values in the XM memory and the updated 
values are written back to the M board. This involves mend = 3(n + 1) + 1 transfers 
from the M board to SM, mend transfers from XM to SM, mend additions, and mend 
transfers from SM to the M board. The additions are performed in three chip sets, 
and the total time for read/modify/write is approximately 53 ps. Therefore the 
total transfer time for input and output is t,,,,, = 73.4 ps. Thus, from Eq. (4), the 
total number of P boards that can be used without degrading performance is 
N, = (773 + 73.4)/73.4 = 11.5. 

We now discuss the actual speed achieved with the current version of the MD 
code. On one board, the theoretical speed is 22.8 Mflops, assuming all four chip sets 
are used, and both the ALU and multiplier are performing operations at all times 
(two operations every seven cycles). Because of data dependencies, the ALU and 
multiplier cannot perform concurrently for all of the 25 additions and 25 multiplica- 
tions involved in the triplet calculation. The triplet code actually produces an 
average of one operation every 5.9 cycles, instead of one every 3.5 cycles for perfect 
concurrency. The time for one triplet calculation in a chip set is 14.75 ps. Thus, the 
maximum speed of the triplet calculation is 13.6 Mflops per board, assuming that 
all four chip sets are fully loaded with data at all times. The data transfer time for 
four triplet calculations varies from 16 to 34 ps, depending on whether the new 
triplets can use the data for one of the pairs already stored in SM. Both the data 
transfer time and the calculation time are somewhat larger than our estimates. The 
calculation of all triplets associated with a pair utilized 6.6 Mflops of the 
13.6 Mflops possible. It is possible to significantly decrease the data transfer time 
and to approach closer to 13.6 Mflops limit, but it is shown below that other parts 
of the algorithm would severely limit the overall gain in speed. 

The average speed for the entire force calculation is 4.7 Mflops per board. This 
is somewhat smaller than the triplet speed because of the necessity to access data 
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from the slower memory LM during the pair calculation. For one central atom, the 
force calculation, tcalc is 1.57ms and the data transfer time, t,,,,, is 0.20ms. The ratio 
of the total time a board is occupied with a central atom to the data transfer time, 
1.77/0.20 = 8.85, shows that we can keep nine boards busy for the force part of the 
calculation. To do the force subroutine on a one-board system, the data transfer 
and the calculation are done sequentially, so the actual speed we achieve is 
4.1 Mflops. In Fig. 8, the crosses (+ ) indicate the speedup achieved for the force 
calculation as a function of the number of boards. The performance factor is 
normalized by the one-board system, where the data transfer between P and M 
occurs without delay. It agrees very well, with a 7.8-fold speedup with eight boards. 
Therefore, the 8-board system achieves a speed of 32.0 Mflops for the force part of 
the calculation. As mentioned above, we can reduce the time it takes to do the 
triplet calculation (currently limited by data transfer between XM and SM). 
However, with an 8-board system we would then become limited by data transfer 
between the M board and the P board, so unless we can decrease that time, we will 
not actually see a speedup. 

We have also evaluated the overall processor speed versus N,, and this data is 
represented by the squares (0 ) in Fig. 8. Because parts of the code, such as 
updating positions and velocities, have not been optimized to use more than one 
board, they start to take a larger fraction of the time, up to 15% for the 8-board 
system. Therefore, the actual speedup for the 8-board system is a factor of 6.8. The 
8-board version of ATOMS is twice as fast as the Cray XMP for n = 16, and is 

30% faster for n = 8. 
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FIG. 8. Speedup as a function of N,, the number of P boards (speedup = time for MD calculation 
with one P board/time for MD calculation with N, P boards). The squares (0 ) show the overall speed 
for the entire calculation, whereas the crosses ( + ) show the speed of the force calculation only. 
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4.2. Finite Difference Equations for Fluid Flow 

A program to simulate convection and other phenomena in a fluid confined to 
a cavity has also been implemented on ATOMS. Fluid flow is induced by a non- 
uniform temperature imposed at the boundaries of the cavity. Studies of conditions 
leading to laminar or turbulent flow in two dimensions have been performed. 
Navier-Stokes equations were solved using a SIMPLE finite difference algorithm 
[ 181. A 90 x 90 grid was employed in a simulation of a square cell. A 3-board 
ATOMS system was used for the calculations, with the P boards running as closely 
coupled processors (connected to their neighbors with NL and NR). The problem 
was divided among the processors by assigning each one a domain of the cell 
consisting of 30 rows of grid points. 

The parameters describing the system properties at each grid point are: (i) com- 
ponents of the flow velocity U, and u,, (ii) the pressure p, (iii), the turbulent kinetic 
energy k, (iv) the energy dissipation E, and (v) the enthalpy h. Current data for the 
three domains are maintained in LM on each processor board; the data in the M 
board are not updated at the end of each iteration, in contrast to the MD code 
discussed above. All calculations for the evolution of the system parameters at the 
points in a given domain are copied from LM to XM. New parameters for the 
center row of the three can then be calculated with transfers between XM and SM 
only. Parameters at the boundary adjacent to another domain are required for the 
calculations in that domain and are transferred to the corresponding P board using 
the NL and NR interfaces. 

A typical example is the calculation of one of the four coefficients needed for a 
new value of u.,. This routine uses all four chip sets, operating in SIMD mode, and 
each one works with data from a different grid point. At the beginning, all four 
SM-A and SM-B memories are initialized with common parameters required for all 
grid point calculations. These parameters are stored in eight of the 32 locations in 
SM. Then the four SM-A memories are loaded with data from XM for the first four 
grid points in the row, the X side is switched to SM-B, and the floating point 
program is started on the job of processing the data in SM-A. Data for the next 
four grid points are loaded into SM-B at the same time that the floating point 
program is running. All calculations are performed in double precision. Eight 
parameters are sent to each of the SM-B memories, and they occupy 16 of the 32 
locations. The transport of one parameter to each of the four SM-B memories 
requires 11 cycles (10 MHz clock), three cycles overhead at the start and eight more 
for the eight 32-bit words. Thus, the time to load all eight parameters is 8.8~s. The 
optimum calculation time for the 25 double precision operations performed in this 
example is 6.88~s (11 20-MHz cycles per operation, both chips working in parallel). 
At the end of the routine, three parameters are transferred from SM to XM, and 
a pointer to the location of a new set of data in XM is updated; this process 
requires 3 x 11 lo-MHz cycles, or 3.3~s for all chip sets. Data transport between 
XM and SM probably limits the speed of the routine, since the optimum calcula- 
tion time of 6.8,~ is much less than the time required for transport and pointer 
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updating. The total time for the routine is expected to be 12.1~s per grid point. As 
shown by this example, the efficiency of utilization of the floating point chips 
depends critically on the amount of data transport and pointer manipulation 
involved in each routine. The efficiency ranges from 20 to 60% for the routines used 
in the finite difference algorithm. The overall performance of the program has an 
average efficiency of about 30%. 

One iteration involves updating all 30 x 90 grid points on a given board. This 
includes 600 floating point operations for each grid point, or 1.62 x IO6 operations 
for all 30 rows. Data transport to neighboring boards does not slow the processors 
significantly. Even if the P boards were to operate at 100% efficiency, the calcula- 
tion of the 600 operations on all of the grid points in the domain would take 
600 x 90 x 30 x 11 cycles/(8 processors) x 2 x 10’Hz = 0.11s. The time to transfer 
data for a row of 90 grid points to the neighboring board is relatively small; ten 
double precision values per grid point gives 900 double precision words, each 
requiring 40 cycles at 10 MHz, or a total of 0.0036s. The time for transport to two 
adjacent boards is therefore less than 2% of the computation time. It should be 
noted, however, that this data transport cannot proceed in parallel with other 
operations on the P board, and this time is added to that for the computation. 

7. CONCLUSIONS 

We have designed and constructed an algorithm-oriented parallel processor for 
molecular dynamics calculations that is based on a shared memory architecture. We 
have implemented a system that operates as a MIMD parallel processor with up to 
16 P boards. In addition, each P board has four floating point chip sets which 
operate in a SIMD mode. Each chip set ir.:ludes a 2.86 Mflop adder and multiplier 
and two dual-port registers for data transfer between the local memory on the P 
board and the floating point chips. 

The current MD code for multicomponent systems uses all tour chip sets for the 
computationally intensive triplet calculation of the Stillinger-Weber potential, and 
a single board is 50% faster than an Alliant FX4 for the same calculation. The 
8-board system is more than six times the speed of a single P board and is faster 
than the Cray XMP for the same problem. The processor will be even more efficient 
for 4-body and higher interactions. With 4-body interactions the number of calcula- 
tions scales as n3 but data transfer scales as n, so higher order interactions can keep 
more P boards busy without bus contention. By similar reasoning, it is also more 
efficient for long-range interactions. 

In addition to using ATOMS as a shared memeory machine, we have taken 
advantage of the direct linear connections between P boards for finite difference 
calculations. We have found that the machine is efficient for these types of 
problems, provided that appropriate “local” algorithms are employed. 

The total cost of a system with ten P boards is $115,000. This includes $18,000 
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for the MicroVAX II host, $9000 for each P board, $3000 for C and I boards, 
$2000 for the card cage, bus connectors, and fan rack, and $2000 for a four Mbyte 
M board. We have included the cost of manufacturing the multiwire P and C 
boards, but the labor-intensive socket and chip insertion and debugging operations 
were performed by us and are not included. The cost of the P boards is based on 
the inclusion of one WTL1164 and one WTL1165 chip per chip set, and $4300 of 
this is associated with these chips together with the WTL1066 memories. 

We have constructed and tested 21P boards and four C boards. We operate two 
“production” systems with eight boards each and running 24h a day; and use two 
smaller systems for finite element calculations and testing. This is one of the most 
powerful systems available for molecular dynamics investigations of materials. The 
production systems are currently being used to study silicon solidification and 
nucleation, silicon/germanium epitaxy, and related problems. We have repeatedly 
demonstrated the effectiveness of ATOMS for interactive investigations of small 
systems, and for studying large systems and slow processes in the batch mode. 
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